Truncation of titin's elastic PEVK region leads to cardiomyopathy with diastolic dysfunction.

نویسندگان

  • Henk L Granzier
  • Michael H Radke
  • Jun Peng
  • Dirk Westermann
  • O Lynne Nelson
  • Katharina Rost
  • Nicholas M P King
  • Qianli Yu
  • Carsten Tschöpe
  • Mark McNabb
  • Douglas F Larson
  • Siegfried Labeit
  • Michael Gotthardt
چکیده

RATIONALE The giant protein titin plays key roles in myofilament assembly and determines the passive mechanical properties of the sarcomere. The cardiac titin molecule has 2 mayor elastic elements, the N2B and the PEVK region. Both have been suggested to determine the elastic properties of the heart with loss of function data only available for the N2B region. OBJECTIVE The purpose of this study was to investigate the contribution of titin's proline-glutamate-valine-lysine (PEVK) region to biomechanics and growth of the heart. METHODS AND RESULTS We removed a portion of the PEVK segment (exons 219 to 225; 282 aa) that corresponds to the PEVK element of N2B titin, the main cardiac titin isoform. Adult homozygous PEVK knockout (KO) mice developed diastolic dysfunction, as determined by pressure-volume loops, echocardiography, isolated heart experiments, and muscle mechanics. Immunoelectron microscopy revealed increased strain of the N2B element, a spring region retained in the PEVK-KO. Interestingly, the PEVK-KO mice had hypertrophied hearts with an induction of the hypertrophy and fetal gene response that includes upregulation of FHL proteins. This contrasts the cardiac atrophy phenotype with decreased FHL2 levels that result from the deletion of the N2B element. CONCLUSIONS Titin's PEVK region contributes to the elastic properties of the cardiac ventricle. Our findings are consistent with a model in which strain of the N2B spring element and expression of FHL proteins trigger cardiac hypertrophy. These novel findings provide a molecular basis for the future differential therapy of isolated diastolic dysfunction versus more complex cardiomyopathies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titin Extensibility In Situ: Entropic Elasticity of Permanently Folded and Permanently Unfolded Molecular Segments

Titin (also known as connectin) is a giant protein that spans half of the striated muscle sarcomere. In the I-band titin extends as the sarcomere is stretched, developing what is known as passive force. The I-band region of titin contains tandem Ig segments (consisting of serially linked immunoglobulin-like domains) with the unique PEVK segment in between (Labeit, S., and B. Kolmerer. 1995. Sci...

متن کامل

A survey of the primary structure and the interspecies conservation of I-band titin's elastic elements in vertebrates.

Titin is a >3000-kDa large filamentous protein of vertebrate-striated muscle, and single titin molecules extend from the Z disc to the M line. In its I-band section, titin behaves extensible and is responsible for myofibrillar passive tension during stretch. However, details of the molecular basis of titin's elasticity are not known. We have compared the motif sequences of titin elastic element...

متن کامل

Molecular mechanics of cardiac titin's PEVK and N2B spring elements.

Titin is a giant elastic protein that is responsible for the majority of passive force generated by the myocardium. Titin's force is derived from its extensible I-band region, which, in the cardiac isoform, comprises three main extensible elements: tandem Ig segments, the PEVK domain, and the N2B unique sequence (N2B-Us). Using atomic force microscopy, we characterized the single molecule force...

متن کامل

Renin overexpression leads to increased titin-based stiffness contributing to diastolic dysfunction in hypertensive mRen2 rats.

Hypertension (HTN) is a major risk factor for heart failure. We investigated the influence of HTN on cardiac contraction and relaxation in transgenic renin overexpressing rats (carrying mouse Ren-2 renin gene, mRen2, n = 6). Blood pressure (BP) was measured. Cardiac contractility was characterized by echocardiography, cellular force measurements, and biochemical assays were applied to reveal mo...

متن کامل

Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I

Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can affect heart function as a whole and, if so, how. For this, we studied the mSNP T2850I, seemingly l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 105 6  شماره 

صفحات  -

تاریخ انتشار 2009